If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-8x-1020=0
a = 4; b = -8; c = -1020;
Δ = b2-4ac
Δ = -82-4·4·(-1020)
Δ = 16384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16384}=128$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-128}{2*4}=\frac{-120}{8} =-15 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+128}{2*4}=\frac{136}{8} =17 $
| 1/4(4r-8=r-2 | | s=2+(1/3)s | | u/13=17/8 | | s=2+.333333333s | | (x+3)/4=(x-4)/6 | | 5+1.5(z+2)=3.5z-2 | | 48x-64=16(3x-4) | | 3.6x+39.7=19.5-6.5x | | m/4+(-0.8)=0.5 | | .5t+4=t | | 3(w-6)=18 | | -2.3+2.2t=7.6 | | 2x+17=3(X+3) | | -(x+3)2=49 | | 4y-2(-4.5)=9 | | 4x/9+4x/3=16 | | -6–2z=-z | | 5x-2-58=180 | | 4y-2(4.25)=9 | | 1/7x5=2 | | -8.5(-9.9+v)=101.15 | | 3+j=3j+5 | | 84=4/5x | | 10r+6=26 | | 8x+3=-28 | | -6a^2+11a=4 | | -3+7+9y=6y+10 | | (-2k-8)=-4 | | 3t–2=4(t–2) | | Y-105=7x | | -8(x+3)+4=-20 | | 2x^2-2=34 |